
markdowns, gratuities and commissions, fees, percent increase and decrease,
percent error.

Instruction

Warm Up: \#47

Vocab: percent

- give students 5 minutes to complete Real World Link on

p. 103

- walk through the examples

1-5 on p. 104-106

- students complete Got It's
- show examples of how to convert 5.6% to decimal - rest of time to work on p. 107 (1-12-Completion
Check)

Assessment

Independent Practice (1-
12) p. 107 - Completion

Check

8th Grade

3.6 - Writing Linear
 Equations

Learning Target

Students will be able to write an expression for real-world
examples and use the expression to problem solve.

Standards

8.EE. 8 Analyze and solve pairs of simultaneous linear equations.

Instruction
Warm Up: \#49
markdowns, gratuities and commissions, fees, percent increase and decrease,
percent error.

Instruction

Warm Up: \#48

Vocab: percent

- walk through/discuss the independent completion check problems from yesterday p. $107(1-12)$
- have students partner up on complete \#34-36 on p. 109
- rest of the time used to work on 2.1 Go Formative

Assessment

2.1 Go Formative

8th Grade

3.6 - Writing Linear

Equations

Learning Target

Students will review their understanding of slope, direct variation, and slope-intercept form.

Standards

8.EE. 6 Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane; derive the equation $y=$ $m x$ for a line through the origin and the equation $y=$ $m x+b$ for a line intercepting the vertical axis at b.
8.EE. 8 Analyze and solve pairs of simultaneous linear equations.
8.EE.8a Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.

Instruction

Warm Up: None

Vocab: solution, order pair, linear expression
Today, students will use an inquiry lab/assignment to discover how to solve a pair of linear expressions by graphing. The front side of the lab breaks the process into the following parts:

1. How to test if points are solutions to linear expressions. Example: is $(1,2)$ a solution to $y=3 x-$ 1?
2. Graphing a linear expression and having the students realize that any point on the graphed line is a solution for the expression.
3. Graphing another linear expression on the same coordinate plane as the previous expression and having students discover a

Vocab:slope-intercept form, ordered pairs, slope, y-intercept
discuss any questions from Thursday from when I was absent
3.6 Extra Practice flipchart to review how to write an expression in slope-intercept form when given two points. Problem solving posters students will be given realworld scenarios to write a linear expression for students will solve the problem one step at a time, move onto the next poster, critique and analyze other groups work, and then complete the next step Once example \#1 is finished, students complete example \#2 as an exit ticket
Finish 3.6 Go Formative

Assessment

Problem Solving Posters Exit Ticket
Finish 3.6 Go Formative
8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

Instruction

Warm Up: \#50

Vocab: rate of change,
slope, slope-intercept form, linear expressions
Intro: To check students'
understanding, I will have them Think, Pair, Share questions \#7 and \#8 on pStudents will be completing a scavenger hunt that will review the concepts that they have learned so far in Chapter 3 which are the following:

- 3.1 - Constant Rate of Change
- 3.2 - Slope
- 3.3 - Equations in $\mathrm{y}=\mathrm{mx}$ Form
- 3.4 - Slope-Intercept Form
- 3.6 - Writing Linear Expressions.
Students will have the choice to work with a classmate to complete the scavenger hunt. They have the rest of
point that is a solution to both linear expressions.

4. Students explain, in their own words, how to find a solution for two linear equations simultaneously. - The backside will then have students find the solution when given a graphed system of equations, and then have the students graph two linear expressions and find the solution.

Assessment

Solving Systems of Equation Inquiry Activity
Attachments
3.7 Inquiry Project.pdf

the class period to finish the
assignment.
Assessment
3.1-3.6 Review Scavenger
Hunt

