

Instruction
Warm Up: \#21 - Talk About
It Thursday
Vocab:
- Desmos Number Set
Definition Sort
- Kahoot (Grudgeball)
- left over time study for the
test
Assessment
Review for test (test on
Monday)

Instruction

Students will be able to compare mathematical expressions and will understand the difference between rational and irrational numbers

Standards

8.EE. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.
8.NS. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

8.NS. 2 Use rational

 approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating theVhursd

- Desmos Number Set

Definition Sort
 test

sment

Monday)

1.10-Comparing Real

Numbers

Learning Target

Students will be able to compare mathematical expressions and will understand the difference between rational and irrational numbers.

Standards

8.EE. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.
8.NS. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

8.NS. 2 Use rational

 approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and
8th Grade

1.9 - Estimating Roots

Students will be able to estimate both square and cubed roots to the nearest integer and tenth.

Standards

8.EE. 2 Use square root and cube root symbols to
represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number.
Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.

8.NS. 2 Use rational

 approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue on to get better approximations.
Instruction

Warm Up: \#19

Vocab: square and cubed root

- Check/discuss Got It ?'s on
p. 83
- discuss how to better
approximate using guided
practice p. $84(1-6)$ (using
tenths, hundredths)
- partner practice to the
nearest tenth (using
homework practice WS) 4
examples
- work time to start on
homework
Assessment
Extra Practice p. $87-88(21$
$-30,32-33$, Spiral Review
is EC)

estimate the value of
expressions (e.g., π^{2}). For
example, by truncating the
decimal expansion of $\sqrt{ } 2$,
show that $\sqrt{ } 2$ is between 1
and 2, then between 1.4 and
1.5, and explain how to
continue on to get better
approximations.
Instruction
Warm Up: \#20
Vocab: number sets - real,
natural, whole, integer,
rational, irrational
- Real World Link p. 89
- talk through examples and
Got It ?'s
- What's the Set! (Practice
classifying numbers)
- p. 93 (1-9) and p. 94 (12)
Assessment
1.10 Self-Check Quiz

estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 1.5 , nd explain how 1.4 and 1.5 , and explain how to continue on to get better approximations

Warm Up: \#20

Vocab: number sets - real, natural, whole, integer,

- Real World Link p. 89
- talk through examples and
classifying numbers)

Assessment
1.10 Self-Check Quiz
decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue on to get better approximations.

Instruction

Warm Up: 1.6-1.10 Quiz (Go Formative)
Vocab: number sets - real, natural, whole, integer, rational, irrational

- Irrational vs. Rational Sort
- correct completion check
- Classify, Compare, order

Numbers Partner Activity
(found in Ch. 1 binder)

Assessment

Classify, Compare, Order Numbers Activity

